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CLASSIFICATION OF LUNAR SATELLITE ORBITS
by

Theodore L. Felsentreger

SUMMARY

A classification is presented of lunar satellite orbits perturbed by the earth
and by the non-sphericity of the lunar gravitational field (the second zonal har-
monic only). The orbits are arranged in three categories — those in which the
argument of perilune circulates, those in which it '"librates' about some odd
multiple value of 7/2, and a class of '"transition'" orbits which belong to neither
of the other two classes.

The discussion iskept as general as possible by holding the semi-majoraxis
arbitrary. In addition, two examples are presented to clarify the analysis.
Graphs for these cases show the permissible ranges of the two parameters in-
volved (integrals of the satellite motion) for the orbit classes.



CLASSIFICATION OF LUNAR SATELLITE ORBITS

INTRODUCTION

Several studies have been made of the long-term effects on artificial satel-
lite orbits disturbed by a third body (references 1, 2, 3 and 4). In addition,
Lidov (4) has extended the analysis to include effects caused by the non-sphericity
of the gravitational field of the central body (the second zonal harmonic only), in
the particular case when the inclination of the disturbing body's orbit plane to
the equatorial plane of the central body is 90°. However, this simplification is
not applicable when the central body is the moon, the angle in question being
about 6°41°',

The orbital motion of an artificial lunar satellite has already been studied
by several people, among whom are Kozai (5) and Giacaglia, et al. (6). However,
adequate analytical representations for the long-period and secular effects
caused by the earth have proved particularly troublesome to obtain — for in-
stance, these two papers present solutions involving elliptic integrals. Later
solutions by Frost (7) and Fisher and Felsentreger (8) (which do not involve
elliptic integrals) depend upon whether the motion of the argument of perilune
is circulatory (secular) or libratory (periodic). It was therefore deemed ap-
propriate to define the regions of circulation and libration.

The disturbing forces which will be considered here, then, give rise to
long-period and secular effects caused by the earth and secular perturbations
due to the second zonal harmonic of the lunar gravitational field.

Orbits will be divided essentially into two classes — those in which the
argument of perilune either circulates or librates. The discussion will be limited
to a presentation of the ranges of permissible values for two parameters (integral
constants), which of course depend upon initial conditions. Values of the param-
eters for orbits which fall into neither category (''transition" orbits) lie on the
boundaries of the ranges.

A list of symbols appears in Appendix A.



EQUATIONS OF MOTION AND CONSTANTS OF THE MOTION

The equations of motion for 7 = ¥1 - €2 and the argument of perilune g
are (6)

d —lsal 2 2 s .
n_ _ 1 - 1 -cos®1i)sin 2
at- a2 g "¢ n%) ( ) g

(1)
dg

3 al n . . 3 n 2.
SE__2 22 [292+5(n%-cos?i)sinfg[l-2 a. — (1 - 5cos?i).
dt 2 q 7 [ 7 (¢ ) &~7 *2 n* ( )

The two integral constants of the motion are readily found to be

a=mn2cos? i

(2)

5 _ 2 .
c=(1-7)@1 ——2'sin2isin2g)-‘é‘A 1——30—(;—3-——1,
U

where

A-_22
al/q

In the case where the moon's second zonal harmonic J , 1s neglected (i.e.,

A = 0), the parameters become the a« and 3 of Lorell (1), who has presented a
classification of orbits disturbed only by a third body. However, the analysis
is considerably more complicated when J, is not considered negligible.

To begin the study, it will be assumed that for all orbits the argument of
perilune must reach some odd multiple of 7/2. Therefore, the maximum c, «
region compatible with elliptic orbits is that for which sin? g = 1 is allowable.
If the argument of perilune is to circulate, then g must eventually become 0.
Hence, the region in the ¢, @ plane describing "circulatory' orbits is that




for which both sin’ € =0 and sin®’ € = 1 are allowable. The non-intersection
of the two regions gives "libratory' orbits.

VALUES OF a AND ¢ FOR WHICH SIN?2 g = 1

For sin2 g = 1, ¢ can be rewritten as

377 - (3 +5a0) 1 +5an3 —%An2 + Aa
275

C

(3)

which, for 7 =1 (i.e., e = 0), describes the line
1
c=-2A(l-3a). (4)

For a particular value of n, o achieves its greatest value when cos’ i =1. Re-
placing 72 in Equation (3) by a, one obtains

’ (5)

which can be rewritten as

1/2 _ 1 2 T\, 1, 1 1/2+—1-A]
(a 1)[(1+5A)a +(1+2 )a 3Aa 3Aa 3

3/2

c = —%A(1—3a)— (6)

a

The last term in Equation (6) is always <0, indicating that Equation (5) describes
a curve in the c, o plane to the right of the linec =-(1/6) A(1 - 3a), and which
asymptotically approaches the axis o = 0. Equations (4) and (5) intersect at

a =1,c =(1/3)A. Therefore, the region to the right of the line of Equation (4)
and bounded by Equation (5) and « = 0, gives permissible values of @ and ¢ .

There remains the region to the left of the line to be explored. Equation
(3) can be rewritten

772[(2c+ 3)n3 - 3795 +-1—A:|
o= 3 2 (7)
5(m° -7°) + A

3




holding ¢ constant and taking the derivative with respect to 7 yields

27 [157710 ~3078 +5(2c +3) n® - 8An° +5A (C +i>n3 +LA2]
a5 i ®
a [5(n® - 7°) + A]?

It is desirable to describe the roots of

£(n) = 1571° - 30m% + 5(2c +3) 7° - 8AnS + 5A <c+3;i>n3 FA? (9)

in order to determine possible maximum values of a.

Now, a = 0 atm = 0. Since f(0) :(1/3)A2 > 0, a increases from 0 until 7
assumes the value of a root of f(7) . Suppose, for the moment, that 7, is a root
of f(n). If it can be shown that a (1) <a (ny) , then one can conclude that «
attains a maximum value either at », or at some other root of f(7) in 0 <7 <1.

From Equation (9), then,

- 1571 + 3078 - 1575 + 8A7; - 239 An} -%A2
C = 3 - . (]_O)
573 (273 + A)

Substitution of Equation (10) into Equation (7) yields (for n = n,)

amy = T 2 30m° + 30 + Anp + 5A7; ¢ A7) (11)
1/ = ’
505(n -~ 7)) + Al (27 + A)

and, for 7=1,

-3071%+ 6077?-%(9—& n$+16An3 —%A(S—A)ni’—%A2
a(l) = . (12
SAn] 2] + )




Then,

(n, - D?* g(ny)
a(l) - a(ny) = J (13)
15A73 (273 + A) [5(7n} - n}) + Al

where

g(n,) = 90(5+A) n}* +180(5+A) 712 +180An 11 - 180 (5-A) n{® - 10 (45- 13A)7]

~A (250 + 3A)n3-2A(290+3A)n] - A(290 + 49A)7% -92A% n5 - 100A% 71}

-A2(50 + 3A)n3 - 6A% n? - 4A3n - 2A3. (14)

The Theorem of Vincent and Descartes' Rule of Signs establishes that g (n,)
has no root in 0 < <1 (see Appendix B). Since g (0) = - 2A*<Oand g(1)=
-15A (A%+ 20A + 24) < 0, one may conclude that

a(l)-a(ny) 20

for 0 <7, < 1; equality occurs only when 7, = 1.

It must now be shown that o (n,) <1 for any root 7, of £(7). From Equa-
tion (11),

a(n,) < 1E==h(n,)= ..307712 + 3077:0 + 5077*13 +A77; - 5077?

+ 30An] - 35An3 + A% n}-35A2 <0

Again, it can be shown thath(7,;) has noroot in 0 <7; < 1 (see Appendix B).
Since h(0) = -5A% <0, it has been established that a(n,) < 1 for any root 7, of f(7).




Finally, it must be demonstrated that, for any value of c less than
-(1/6)A (1-3a), f (1) has at least one root. From Equation (9), f (0) = (1/3) A2 > 0.
Existence of a root between 0 and 1 is assured if f (1) < 0 - hence

LA@G-A

P—> .
f(1) <0 € 1502+

However, when ¢ = A(4-A)/15 (2 +A), =1 1is a root of f(7), and the point a=
(6+A)/5(2+A),c = A(4-A)/15 (2 +A) lies on the line c=-(1/6)A(1 - 3a). Thus,

c <A(4-A)/15 (2 + A)== f(n) has at least one root 7, in 0< 7, < 1 . In addi-
tion, since a (1) <a (n,) forn, # 1, the point a(n,), c lies above the line c =
~(1/6)A (1 - 39).

Hence, the curve whose parametric equations are (for 0 < 7; <1)

20 1
-157}%+ 3078 - 1575 +8An; - ?Anf —§A2
C(T}l) =
573 (213 + A)
(15)
N3 (-3071% + 3078 + And + 5An3 + A?)
0(771) =

5[5(n3 ~-n}) + Al (20} +A)

represents the upper boundary to the permissible c, « region lying to the left
of the line c= -(1/6)A (1 - 3a). It intersects this line at the point ¢ =
A4 -A)/15 (2 +A), a = (6 +A)/5(2 + A), and approaches the a = 0 axis asymptotically.

VALUES OF a AND ¢ FOR WHICH SIN? g =0

For sin? ¢ = 0, Equation (2) becomes

_7)7 +775 - .}_Anz +_;_Aa
C = 6 3 (16)

7,}5

which, for », =1, again becomes the line ¢ =-(1/6)A(1 - 3a). In addition, for
cos?i= 1, Equation (16) becomes

L
C:l—a+3 ,
CL3/2




which describes the same curve as for sin? g = 1. Therefore, the permissible
region to the right of c = <(1/6)A (1 - 32) is the same as for sin? g = 1.

Now, Equation (16) can be rewritten as

N N | 3+.1.A] 17
a—An[n (c-1)7° +=Al. (17

whose derivative with respect to n (for constant c) is

i [7775 +5(@c-1)mn3 +%A;| (18)

Q—l&
I IR
>3

Thus, an analysis of the roots of

F() = 77° + 5 (c - )n® + 2A (19)
is in order.
Obviously, since F(0)=(1/3)A>0, o increases [rom a value of 0 at 7 =0

until a root of F () is reached, assuring the existence of a relative maximum
for a in 0 <7 < 1 (providing F (n) has a root). Hence, assuming 7, to be a
root of F (n), it again behooves one to show that « (1) < a (7).

When 7 =7, is a root of F (7), Equation (19) gives

~ 773 + 593 —%A
c = 3 . (20)
5

Equation (17) then becomes (for 7 =7,)

7 (- 475 + A)

21
SA ’ =D

a(mn,) =



forn =1,

-42 7% +5(6 +A)nd - 2A
a(l) = . (22)
15 An?
Then,
(n, - DG
a(l) - a(n,) = ————", (23)
15 A n3y

where

G(n,) = 1278 + 2417 +367% +487n3 +607} + 3 (10 - A)n3 - 6An? —4An, -2A. (24)

G (7,) has exactly one positive root. For A < 14, this root is in 0 <7, < 1;for
A = 14, the root is 7, = 1; and for A > 14, G (7,) hasno roots in 0 <7, <1
(see Appendix B). Therefore, a (1) -a (n,) < 0 for A > 14; for A < 14, designat-

ing the root of G (7,) by n;} ,

(my - D2, -1 G (my
15A 17‘;’

?

a(l) -a(n,) =

where G* (n,) > 0. Thus, a (1) - a (n,) < 0 whenn, < 7 - equality occurs (for
A <14) only when 7, = 7]

The foregoing has also shown that the point c, a(n,) lies above the line
c=-(1/6)A (1-3a) when 0< 7, <1 (for A > 14), and when 0 < 7, < 7] (for A < 14).

For the two cases respectively, the points
1
* 3 * *
1/, .1 ~4+A ~7ny7*5n-g A SR
c:-g 2+§A,a: SA andc = , a= A

*3
5771

are on the line.




As before, now, it must be shown that @ (5,) < 1 for any root n, of F(7).
From Equation (21),

a(n,) <1 <==H (M) =-4n] +An] - 5A<0.

But H (n,)has noroot in 0 < 7; < 1 (see Appendix B). SinceH (0) = -5A < 0,
a(n,) < 1 for any root 7, of F(7).

Finally, inthe case where A > 14,

1

c < . =
- 5

(2+%A)—~“—-————>F(1):5c+2+%A§0.

Also, F (0) = (1/3)A>0, so F (1) has at least one root in 0< 1 < 1. The existence
of at least one root of F (n) in the case where A < 14 will not be proved here —
however, it can be proved after choosing a value of A <14,

To summarize, then, the curve whose parametric equations are

1
—777? + 577‘;’ ——3-A

c(n.

) =
i’

577:13

(25)

n} (-4n7 + A)
5A

i1

a(ny)

represents the upper boundary (for sin? g = 0) to the permissible ¢, ¢ region
lying to the left of the line c = -(1/6)A (1-3a). When A > 14, the parameter 7,
may take on all values in 0 <7, < } However, when A < 14, 7, is restricted to
the range 0 <7, < 7 < 1, where 7, is the root of G (7,) defined by Equation (24).

Figure 1 depicts the ¢, o regions defined in the previous two sections.



a $a,n
i
Z - -3a
c=-zAQ
A@-M  _6+A
15(2+A) 52 +A) 1,
20 1 c=1-a+3
3/2
~1571° + 0.0% - 157§ + 8An} - S AN} - AT a
c =
573 (20} +A)
0<n <1
a_'r){(-:{)n}°+wn:+An{+5Aﬂf*A’)
5 [5(n} - m}) + A} (27] +A)
LIBRATION CIRCULATION
(-ta0 ¢
6 ?
1
- s ’—— -
.. 70+ 57} -3A [_%(2+%A)’ 45:A:|(A314)
573} 0<n, S1(A219)
1
- s 3 LA 2 .5

0<n Snj<1(A<4) Tnyt e 5y 732 (4755 + A)
n} (47} +8) o 3 ! ! (A <14)
-t 57].’ SA

SA 1
Figure 1

EXAMPLES

The two cases to be presented here correspond to values for the semi-
major axis of the satellite's orbit of 2 and 7.4822577 moon radii. Then, the
values for A are 164.97081 and .22510948, respectively. For the first case,
Equations (4), (5), (15), and (25) become

c=~27.495135 (1 - 3(1) (41)
_ 54.990270 1
c=1 —ot T3 — (5%

10




~15710 + 301% - 159% + 1319.76657 ~1099.8054 71 - 9071.7893

Cc =

5n3 (273 + 164.97081)

(15")
2 (. 10 3
a(n,) = M1 (-3071% + 3078 +164.97081 75 + 824.85405 73 + 27215.368)
5[5(n} - 1) + 164.97081] (273 + 164.97081)
0<n,<1)
~77% +57%_ 54.990270 @<
C(T}l) =
Sn?
(25"
n% (-475 + 164.97081)
0(771) =

824.85405 (0<n, <1)

For A = .22510948, the root of G (n,) is 77’; = .25110445; therefore, the equations
defining the boundaries of the circulation and libration regions are

c =-.037518247 (1 - 3a) (4"
.075036494

=1 - + = 1

¢ @ 2372 (")

- 1571 + 3078 - 15795 + 1.80087584 75 - 1.50072988 03 - .01689143

C(771) =
5773 (2773 + .22510948)
1 1 (15”)
. 72 (30710 + 3078 + .22510948 13 +1.12554740 73 + .05067428)
a(mn,) =
3
5[5t} ~ 7} +.22510948] (2n} +.22510948) (5, . q,
=773 + 573 +.075036494
c(mn,) = 53
1
(2511)

n? (- 473 +.22510948)
1.1255474 (0 <7, < .25110445).

11



Tables 1, 2,and 3 (Appendix C) list values of ¢ and o for points on the
curves defined by the preceding equations. Figures 2, 3, 4, and 5 (Appendix D)
show the circulation and libration regions for the two cases. It is readily ap-
parent that the libration region for a = 2 R; is considerably smaller than that
for the case a = 7.4822577 R, - this is a consequence of the fact that the part
of the disturbing function dependent upon J, (which is purely secular) is more
significant for smaller values of a.

CONCLUSIONS

Given a set of initial conditions for an artificial lunar satellite, it can be
determined from a graph similar to Figure 1 whether the orbit falls into the
circulation case or libration case. If circulation, the method outlined by
Frost (7) can be used to compute the long-period and secular effects caused by
the earth and the secular effects due to the moon's second zonal harmonic. On
the other hand, if the orbit is libratory, the method presented by Fisher and
Felsentreger (8) may be employed.
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APPENDIX A
SYMBOLS
a= semi-major axis of satellite's orbit
e= eccentricity of satellite's orbit
i = inclination of satellite's orbital plane to moon's equatorial plane
g= argument of perilune of satellite's orbit
n= mean motion of satellite
t= time
- V162
R,.= mean radius of moon x~ 1738 km.
a. = semi-major axis of moon's orbit > 221.17376 R

J ,= second zon:;tl harmonic coefficient of moon's gravitational potential
~2.41 x 10

mass of moon ~ 1.0123
mass of earth

a;= (1/2) (a/ac)“”

q=1+

a,= RZ J,/a?

)

CLl/q

a, ¢ = constants of the motion

14



APPENDIX B

1. Proof that g(n,) hasnorootin 0 <7, <1

From Equation (14),

g(n,) =90 (5+A) 713 +180(5+A) 7} +180An}! - 180(5-A) 7]°-10(45-13A) n?
-A(250 +3A)n] -2A(290 + 3A) ] -A(290 + 49A) 12 -92A% 77 ~ 100A? 7}

3 3
-A2(50 + 3A) 77‘3 — 6A3 n% - 4A°n, - 2A°,

which, by Descartes' Rule of Signs, has either one positive root, or possibly

three (in the case 45/13 < A < 5). Replacing m; by 1/1 +X (X > 0) transforms the
equation into one having exactly the same number of positive roots as those of

g(n)in 0<m, < 1. Thus, solving ¢ (7,) = 0 for 0 < m, < 11is equivalent to
solving the following equation for X >0 (the coefficients of X13, X12 | . X5 are
all obviously negative, so there is no need to write them down explicitly):

— 13 12 11 10 8 7 5
0=a,X3+a,X2+a X'+a X0+a X +a,X8+a, X +a,X0 +a, X

-10(45+1997A+ 3136A% +602A3)X* -3(900 + 7850A + 7139A? + 934A3) X3

~5(1080+ 3158A+1915A2 +177A%)X?~10(360 + 516A+253A% +17A%) X

-~ 15A(24 +20A +A?%),

where a,,,a,,,...,385 < 0. This equation obviously can have no positive

solutions - hence, g (7;) has no roots in0 < 7, <1.

2. Proof that h (n,) has no rootin 0 <7, <1

h(n,)=-307m+3074° + 5078+ An] -507% + 30A7; - 35A7° + A% _5A2,

15



Since h (0) = -5 A2 < 0 and h(1) = -4A (1 +A) < 0, it remains to be shown that
h(n,) hasno roots in 0 < 7, < 1. Equivalently, it must be shown that the trans-
formed equation, after replacingn, by 1/1 +X (X>0), has no positive roots. The
transformed equation is

0 = -5A2X12 _ 60A2 X!1 - 329A2 X10 _ 5A(7 + 218A) X° —45A (7 + 54A) X®
~30A(41+128A)X7 - 10(5+273A+441A%) X® - (300 +3779A + 3708A%) X*
_5(140 +671A +453A%) X* —20(40 + 94A + 49A?) X3 -5(84 + 124A + 57A?) X?

-10(4 +10A+ 5A2) X - 4A (1 +A),

which has no non-negative solutions. Consequently,h () has no roots in
0<m, <L

3. Roots ofG(nl) in0<q71 <1

G(n,) =127% + 2477 + 36 75 + 48735 + 6073 + 3(10 - A) 7] - 6A7] - 4An, - 2A.

Finding the roots of G (n,) in 0 <x, < 1 is equivalent to finding the positive
roots of

by X + b, X7 + b, X6 + 5(1-47A) X5 + 35(6 - 11A)X* + 6(98 -67A) x3

+20(42 - 13A)X? + 5(126 - 19A) X + 15(14 - A),

where by, b, by <0and 7, = 1/1 + X. Descartes' Rule of Signs establishes
that the polynomial in X has exactly one positive root for A < 14, and no positive
roots when A > 14. Consequently, G (n,) has exactly one root in 0 < 7; < 1 for
A< 14, and no roots in 0 < 7, < 1 whenA > 14. SinceG(1) = 15 (14 ~A), the root
is 1 when A =14, and is in 0 < My < 1 when A <14,

16




4. Proof that H(7;) has no rootin 0 <7, <1

H(ny) = - 4n? + A2 - 5A
H(1) =-5A<0, solisnot aroot.

Setting 7, = 1/1 + X, the polynomial set equal to zero is

0 = ~5AX7 - 35AX5 - 104AX5 ~170AX* - 165AX3 - 95AX? - 30AX - 4(1 HA),

which obviously has no positive roots. Therefore, H (n,) has no roots in
0<mn <1

17
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.9409
.8836
.8281
7744
.7225
.6724
.6241
5776
.5329
.4900
.4489
.4096
3721
.3364
.3025
2704
.2401
.2116
.1849
.1600
.1369
.1156
.0961
0784

Table 1
1
3

a3/2

¢, avalues forc=1-a +

c (A=164.97081)

54.990270
60.310987
66.323153
73.144811
80.918967
89.819971
100.061843
111.909208
125.619822
141.824080
160.831490
183.386990
210.361630
242.896060
282.503110
331.217530
391.818790
468.169490
565.741440

20

c (A= .22510948)

.07503649
.14131618
.20674184
.27147455
133570943
.39968440
46369149
.52809180
.59333530
.65998744
.72876529
.80058712
.87664150
.95848490
1.04818164
1.14850822
1.26325735
1.39769967
1.55930176
1.75887216
2.01244520
2.34448300
2.79353121
3.42266381
4.33980761



Table 2

1
15710 + 3078 - 1578 + 8A7S - %Omﬁ - 3N
c, a values for c = )

513 (273 + A)

7% (-30710 + 30m% + Anj + 5473 + A?)

5[5(n3 - m3) + Al (273 + A)

a

.90
.85
.80
.75
.70
.65
.60
.55
.50
45
.40
.35
.30
.25
.20

c(A=164.97081) a(A=164.97081) c(A=.22510948) a(A-.22510948)

- 10.60285 .20479126 .02545983 .55953289
- 12.58625 .18367060 - .00179364 45293847
- 14.99181 .16402945 - .05465415 .36267636
- 17.95302 14574676 - .12887024 .28707338
- 21.65669 .12872644 - .22039516 .22453776
- 26.36940 .11289356 - .32639709 17250927
- 32.48019 .09819074 — .44028987 .13267987
- 40.57145 .08457501 - .56180739 .10053275
- 51.54089 .07201504 - .68716695 07578677
- 66.82003 .06048873 - .81440876 .05716197
- 88.78450 .04998109 - .94307939 .04342257
- 121.56804 .04048246 -1.07559004 .03340831
- 172.78868 .03198710 -1.21995835 .02596810
- 257.51846 .02449195 -1.39568007 .02022638
- 408.39139 01799570 -1.64784077 .01545777
- 704.97551 .01249808 -2.08708494 .01126196
-1375.89282 .00799932 -3.02826351 .00753283
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4
e <

.35
.30
.25
.20

c, a values for c =

c (A =164.97081)

_77)§ + 577‘;5 —%A

Table 3

M (-4} + A

a (A =164.97081)

- 11.39805
- 13.09109
- 15.22049
- 17.91999
- 21.37657
- 25.85696
- 31.75030
- 39.63903
- 50.42092
- 65.52751
- 87.33443
119.97545
171.06859

255.68588
406.46133
702.96296
-1373.81275

.19515066
17711353
.15968058
.14294541
.12698302
.11185269
.09760064
.08426227
.07186425
.06042617
.04996211
.04048188
.03199205
.02449688
.01799894
.01249970
.00799994

' 3
5771

N

25110445
.240
.230
.220
210
.200
190
.180
175
170

22

ki

a

5A
c (A=.2251008) (A =.22510948)
- .03612413 .012386983
- .16623741 .011357005
- 30750281 .010458998
- 47716070 .009591355
- .68222360 .008755992
- .93191234 .007954511
-1.23851181 007188233
-1.61862795 .006458243
-1.84307067 .006107137
~2.09506996 .005765417
-2.37891665 .005433167
-2.69973129 .005110460
-3.06365715 004797361
-3.47810698 .004493928
-3.95208005 .004200211
-4.49657219 .003916254
-4.86261985 .003750580
-5.40369117 003535184
-5.85447414 .003377770
-6.17897523 .003274799
-6.34899307 .003223906
-6.70561192 .003123305
-7.08586163 .003024286



APPENDIX D

Graphs
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